

Implementing ASHRAE 62.2 Ventilation Standards

Wisconsin's Experience

WI's Experience w/ 62.2

- WI moved to 62.2-December 2005
 - After 2004 Pilot of 62.2-2004 and 62.1(BTLa) ventilation requirements
- The link between ventilation & combustion
 - Standard testing requirements
- Ventilation implementation issues
 - Can you make it work in the field?
- Fine tuned procedures
 - 2008
 - 2011

Changing Housing Stock

• Houses smaller, tighter

- Many more 1960-1970's ranch style units coming into the program
 - Don't need much insulation
 - Mechanical have usually been changed out or we will
 - Issues are often health & safety:
 - Air quality
 - Moisture management
 - CO/attached garages

Different Housing Stock

 Will this house need ventilation?

Aging Ranch Houses

Will this house need ventilation?

Note: Beaver is eligible for Social Security

But we can smell his socks in the TV room.

Diagnostic Testing & Ventilation are Linked

- Blower door testing allows the advantage of the infiltration credit.
- Worse case depressurization provides an indication of the existing building pressures.
- Initial test results provide information for "End State Planning."

Diagnostic Procedures

Performance testing:

- Worst Case Draft (WCD)
- Building Depressurization (DTL)
- Building Air Leakage (blower door testing)
- Mechanical ventilation
 - Based on ASHRAE Standards, WI UDC, and practical applications
 - Assessment of existing ventilation

WI's Standard Diagnostic Testing

- Blower Door Tests:
 - As is, Pre-test, Post-Test, Zone Diagnostics, as needed
- Worst Case Draft and Spillage Tests
- Depressurization Limit Tests
 - Exhaust Appliance measurements/estimates
- Ventilation
 - 62.2 Vent Calculations
 - Existing actual/estimate
- Gas Range CO Testing

Piloted ASHRAE 62.2-2004

- Strong interest in the potential benefits in the new standard
- Piloted the project with several grantees

 Compare the results from BTLa and 62.2
 - Allowed pilot agencies to use the results that (BTLa and 62.2) most workable for program

2004-2005 WI Study On Ventilation Rates

Information Collected On Exhaust Flow Rates

- Existing Equipment
- Added or Replacement Equipment
- Type of Combustion Systems
- Blower Door Results
- Calculated Pressure Differences

WI Ventilation Pilot (2004)

Continuous Ventilation Rates

Percent of Units Requiring Ventilation

Expectations Based on 2004 Pilot

- Install ventilation in 75-80% of units – Versus 50% rate for 62.1
- Invest \$525 in equipment
 - Fan & Controls
 - Same with no intermittent options
- Install an average of 30 cfm of continuous ventilation

home**energy +**

- Versus 60 CFM continuous for 62.1
 - No intermittent options

Key Interest Groups

- Trainers
- Building occupants & owners
- Auditor/Inspectors
- Crews/Contractors
- Local program management
- Quality Assurance staff
- Program Administrators

Hurdles

- Field testing the form & protocols
- Training & Implementation
- Quality assurance issues
 - Error tolerance
 - How do you measure success?
- Management understanding protocols & goals

home**energy+**

Don't Underestimate Work Flow Issues

- Who does what tests when?
- The numbers change when you're working on the building.
 - Depressurization of CAZ
 - Blower door CFM50 numbers
 - CFM of exhaust ventilation required

Work Flow Issues Continued

- When do you install exhaust ventilation?
 - What if the numbers change?
 - Start out needing 20 cfm, end up needing 70
 - New controllers are very helpful
- Do you need to add make-up air?
 - How and where?
 - Current models are not very helpful.
 - Best case scenario is good end-state planning.

Considering Ventilation

- Issues
 - How big is the house? Basement in or out
 - Use blower door guidance
 - How to calculate the size of fan
- When in the workflow? :
 - Some solutions
 - Do end stat planning
 - Mock up the fan
 - Use a good controller and adjust affinal carry

How Big Is the House?

- If you'd open the basement door to get a CFM50,
- If the basement is finished or living space,
 - the basement is in.

home**energy +**

New Expectations

- Auditors Inspectors:
 - Performance & diagnostic testing
 - Measuring Flow Rates of existing ventilation
- Installers
 - Ducting Methods
 - Size and Type of Material
 - Connections and Sealing
- Customers
 - Maintenance of Systems
 - Cleaning Grilles
 - Changing Filters (HRV)

Staggered Implementation

- Assessed our training capacity

 Built curriculum pieces
 - Determined how many sessions were required for statewide implementation
- Allowed grantees to sign-up for their training and implementation timetable
 Implementation required the day after training

ome energy +

Trained August through December

Implementation Lessons

- Grantees loved staggered process

 QA monitors did not love it—what? When?
- Training covered basic calculations and field planning
 - Primarily inspection staff
- Needed additional training in ventilation systems
 - Installation options
 - Target: Inspectors, installers, subcontractors
- Needed "Why" training for staff and customers
 - Staff need to believe in 'why' to sell customers on 'why'

Combustion Safety, Depressurization & Ventilation

- Buildings with significant negative pressure have many solutions
 - Must identify and solve the driving forces
 - Prior to ventilation
- Make-up air for ventilation is usually not needed with proper building assessment
- Depressurization testing
 - Critical component of ventilation process

Depressurization Solutions

- Assess distribution system
 - Seal returns
 - Add returns
- Sealed combustion furnaces
- Power vented water heaters
- De-rating existing ventilation
- Upgrading existing ventilation
 - Better fan, good controller

Is This A Problem?

- Impacts on heat loss
- Draft
- **Moisture**
- Building ΛP

Draft Concerns

CAZ goes Negative

- What should we do?
 - Solvable draft problem?
 - Add make-up air?
 - Extend chimney?

Defuser in Return

Solutions to Depressurization

High Efficiency Heating Systems
 – Sealed Combustion

Power Vented
 Water Heaters

Another Solution to Depressurization

Fixing Disconnected Returns

Ventilation Not Always the Solution?

Moisture Problems-*Fixable* Cracked heat exchanger in oil furnace

- Wet & Crawl basement
- Broken chimney liner
- Knee walls attics tied together through the floor
- Gutters not extended

62.2 will not solve serious moisture problems.

Small Houses Can Be Trouble

- Moisture problems at audit
 - <1200 cfm50</p>
- No signs of moisture problems on follow-up

- Measures Installed
 - Attic insulation R50
 - Baseload measures
 - Sealed combustion furnace installed
 - Power vented water heaters
 - ENERGY STAR exhaust fans

Know What's There

These Tools Assist In Accurately Measuring
 Exhaust Ventilation Flow Rates

End State Planning

- Design your job work plan
 - Know the Depressurization, CFM50 numbers when planning work
 - Assess the impact of planned work
 - Key juncture sealing
 - Sidewall insulation
 - Bypass sealing
 - Mechanical systems work-water heater, heating system
 - Project what the Final Product should be
 - Installers mock up the fan
 - Use a good controller and adjust at final test

Make-up Air

- WI UDC language:
 - Add make-up air if the house is excessively depressurized or pressurized
 - Use DTL Guidelines to determine that
 - Add make-up that is 40% of the exhaust ventilation (code doesn't require dryer)
 - Allow dryer in the calculation

2008 Administrative Concerns

- Too expensive
 - Hard sell to some customers
 - Defer unit if they don't allow the installation?
- Strays from Mandate to "Save Energy"
 - Electrical costs to vent; heated CFMs lost
 - Modeling does show costs offset by overall annual savings from air sealing
 - Therm savings evaluation shows a 25 therm penalty

Fine Tuning: Refine Ventilation Criteria

- Bedrooms vs. occupant sizing
 - Move to occupant based sizing
- No added ventilation when 62.2 called for <15 CFM of additional ventilation
 - Spot ventilation allowed for bath & kitchen, moisture control
- Develop customer control package
 - Guidance what ventilation is
 - What has been installed; how to use the equipment
 - Measure refusal tied required signature on liability waiver

Current Ventilation Statistics

- Occurrence Rate:
 - 57.1% (1 to 4 Unit buildings)
 - Exhaust ventilation- 56.4%
 - Exhaust w/ make-up air-0.7%
 - HRA/ERA-0.6%
 - -43.1% (mobile homes)
 - Exhaust ventilation 42.9%
- Average Cost
 - \$513.61 (1 to 4 Unit buildings)
 - \$541.53 (mobile homes)

